Default
Question
If A is a square matrix such that $A^2=A$, then $(I−A)^3 + A$ is equal to
Solution
The correct answer is $I$
Explanation
A is a square matrix such that $A^2=A$
$(I−A)^3 +A=(I−A)^2(I−A)+A$
=$(I^2−2AI+A^2)(I−A)+A$
As $A^2 =A$ and $I^2 =I$, the above can be written as
=$(I−2A+A)(I−A)+A$
=$(I−A)(I−A)+A$
=$(I−A)^2+A$
=$I^2−2AI+A^2 +A$
=$I−2A+A+A$
∴ $(I−A)^3 +A=I$
cdcb9f6a-7874-11ed-94f3-5405dbb1cb03